高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析
一、高考物理精讲专题动量守恒定律
1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.
①求弹簧恢复原长时乙的速度大小;
②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N  【解析】 【详解】
(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:
又知
联立以上方程可得
,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为
由动量定理可得,挡板对乙滑块冲量的最大值为:
2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的
1
2
反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2
10m/s g =。求:
(1)碰撞后瞬间,小球受到的拉力是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J  【解析】 【详解】
解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:
22
1111011=22
m gL m v m v μ--
解之可得:1=4m/s v  因为1v v <,说明假设合理
滑块与小球碰撞,由动量守恒定律:21111221
=+2
m v m v m v -    解之得:2=2m/s v
碰后,对小球,根据牛顿第二定律:2
22
2m v F m g l
-=
小球受到的拉力:42N F =
(2)设滑块与小球碰撞前的运动时间为1t ,则()0111
2
练习题mvL v v t =+ 解之得:11s t =
在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11  1.5X L X m ∆=-=
设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t  则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭
解之得:22s t =
滑块向左运动最大位移:121122m x v t ⎛⎫
=
⋅⋅ ⎪⎝⎭=2m  因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度
11
2
v <v , 说明滑块与小球碰后在传送带上的总时间为22t
在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程
22212X vt m ∆==
因此,整个过程中,因摩擦而产生的内能是
()112Q m g x x μ=∆+∆=13.5J
3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:
(1)A球与B球碰撞中损耗的机械能;
(2)在以后的运动过程中弹簧的最大弹性势能;
(3)在以后的运动过程中B球的最小速度.
【答案】(1);(2);(3)零.
【解析】
试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:
碰后A、B的共同速度
损失的机械能
(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大
根据动量守恒定律有:
三者共同速度
最大弹性势能
(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.
弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:
根据机械能守恒定律:
此时A、B的速度,C的速度
可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.
考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.
【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定
律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答
4.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m
的光滑
1
4
圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g  =10m/s 2。求:
(1)小物块与小车BC 部分间的动摩擦因数;
(2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s  【解析】 【详解】
解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v +=  所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R
L
μ=
= (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v  由动量守恒得 :12mv Mv = 由能量守恒得 :221211
22
mgR mv Mv =+ 联立解得: 21/ v m s =
5.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)
【答案】25m/s
【解析】试题分析:要使两车恰好不相撞,则两车速度相等.
以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒:
()20120M v M m M v +=++共,解得5m /s v =共
以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得
25m /s v =
考点:考查了动量守恒定律的应用
【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解
6.牛顿的《自然哲学的数学原理》中记载,A 、B 两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16.分离速度是指碰撞后B 对A 的速度,接近速度是指碰撞前A 对B 的速度.若上述过程是质量为2m 的玻璃球A 以速度v 0碰撞质量为m 的静止玻璃球B ,且为对心碰撞,求碰撞后A 、B 的速度大小. 【答案】
v 0
v 0
【解析】设A 、B 球碰撞后速度分别为v 1和v 2 由动量守恒定律得2mv 0=2mv 1+mv 2 且由题意知=
解得v 1=
v 0,v 2=
v 0
视频
7.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示,1u 等于1个
12
C 原子质量的十二分之一.取氢核和氦核的质量分别为1.0u 和14u .)
【答案】m =1.2u  【解析】
设构成铍“副射”的中性粒子的质量和速度分别为m 和v ,氢核的质量为m H .构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和v H ′.由动量守恒与能量守恒定律得 mv =mv ′+m H v H ′ ①
12mv 2=12mv′2+1
2
m H v H ′2②