高考物理法拉第电磁感应定律-经典压轴题附详细答案
一、法拉第电磁感应定律
1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求:
(1)线圈中的感应电流的大小和方向;
(2)电阻R两端电压及消耗的功率;
(3)前4s内通过R的电荷量。
经典mv【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。
【解析】
【详解】
(1)0﹣4s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:
由楞次定律知感应电流方向沿逆时针方向。
4﹣6s内,由法拉第电磁感应定律有:
线圈中的感应电流大小为:,方向沿顺时针方向。
(2)0﹣4s内,R两端的电压为:
消耗的功率为:
4﹣6s内,R两端的电压为:
消耗的功率为:
故R消耗的总功率为:
(3)前4s内通过R的电荷量为:
2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:
(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v
Q R
=(3)43cd Blv U =
【解析】 【详解】
(1)线框离开磁场的过程中,则有:
2E B lv =
E I R = q It =
l t v
=
联立可得:2
2Bl q R
=
(2)线框中的产生的热量:
2Q I Rt
=
解得:234B l v
Q R
=
(3) cd 间的电压为:
23
cd U I
R = 解得:43
cd Blv
U =
3.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α
=︒,两
侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道
足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高
(2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q
【答案】(1) 1V ;a 端电势高;(2) 0.1kg ; 0.5J  【解析】 【详解】
解:(1)只放ab 杆在导轨上做匀加速直线运动,根据右手定则可知a 端电势高;
ab 杆加速度为:a gsin α=
2s t =时刻速度为:10m/s v at ==
ab 杆产生的感应电动势的大小:0.1110V 1V E BLv ==⨯⨯=
(2) 2s t =时ab 杆产生的回路中感应电流:1A 5A 220.1
E I R =
==⨯  对cd 杆有:30mgsin BIL ︒=
解得cd 杆的质量:0.1kg m =  则知ab 杆的质量为0.1kg
放上cd 杆后,ab 杆做匀速运动,减小的重力势能全部产生焦耳热
根据能量守恒定律则有:
300.11010.5J 0.5J Q mgh mgs sin ==︒=⨯⨯⨯=
4.如图所示,两根相距为L 的光滑平行金属导轨CD 、EF 固定在水平面内,并处在竖直向下的匀强磁场中,导轨足够长且电阻不计.在导轨的左端接入阻值为R 的定值电阻,将质量为m 、电阻可忽略不计的金属棒MN 垂直放置在导轨上,可以认为MN 棒的长度与导轨宽度相等,且金属棒运动过程中始终与导轨垂直并接触良好,不计空气阻力.金属棒MN 以恒定速度v 向右运动过程中,假设磁感应强度大小为B 且保持不变,为了方便,可认为导体棒中的自由电荷为正电荷.
(1)请根据法拉第电磁感应定律,推导金属棒MN 中的感应电动势E ;
(2)在上述情景中,金属棒MN 相当于一个电源,这时的非静电力与棒中自由电荷所受洛伦兹力有关.请根据电动势的定义,推导金属棒MN 中的感应电动势E .
(3)请在图中画出自由电荷所受洛伦兹力示意图.我们知道,洛伦兹力对运动电荷不做功.那么,金属棒MN 中的自由电荷所受洛伦兹力是如何在能量转化过程中起到作用的呢?请结合图中自由电荷受洛伦兹力情况,通过计算分析说明.
【答案】(1)E BLv =;(2)v E BL =(3)见解析 【解析】 【分析】
(1)先求出金属棒MN 向右滑行的位移,得到回路磁通量的变化量∆Φ ,再由法拉第电磁感应定律求得E 的表达式;
(2)棒向右运动时,电子具有向右的分速度,受到沿棒向下的洛伦兹力,1v f e B =,棒中电子在洛伦兹力的作用下,电子从M 移动到N 的过程中,非静电力做功v W e Bl =,根据电动势定义
W
E q
=
计算得出E. (3)可以从微观的角度求出水平和竖直方向上的洛伦兹力做功情况,在比较整个过程中做功的变化状况. 【详解】
(1)如图所示,在一小段时间∆t 内,金属棒MN 的位移  x v t ∆=∆
这个过程中线框的面积的变化量S L x Lv t ∆=∆=∆    穿过闭合电路的磁通量的变化量
B S BLv t ∆Φ=∆=∆
根据法拉第电磁感应定律  E t
∆Φ
=∆ 解得  E BLv =
(2)如图所示,棒向右运动时,正电荷具有向右的分速度,受到沿棒向上的洛伦兹力
1v f e B =,f 1即非静电力
在f 的作用下,电子从N 移动到M 的过程中,非静电力做功
v W e BL =
根据电动势定义  W E q
= 解得  v E BL =
(3)自由电荷受洛伦兹力如图所示.
设自由电荷的电荷量为q ,沿导体棒定向移动的速率为u .
如图所示,沿棒方向的洛伦兹力1f q B =v ,做正功11ΔΔW f u t q Bu t =⋅=v                垂直棒方向的洛伦兹力2f quB =,做负功
22ΔΔW f v t quBv t =-⋅=-
所以12+=0W W ,即导体棒中一个自由电荷所受的洛伦兹力做功为零.
1f 做正功,将正电荷从N 端搬运到M 端,1f 相当于电源中的非静电力,宏观上表现为“电
动势”,使电源的电能增加;2f 做负功,宏观上表现为安培力做负功,使机械能减少.大量自由电荷所受洛伦兹力做功的宏观表现是将机械能转化为等量的电能,在此过程中洛伦兹力通过两个分力做功起到“传递”能量的作用. 【点睛】
本题较难,要从电动势定义的角度上去求电动势的大小,并学会从微观的角度分析带电粒子的受力及做功情况.
5.水平面上平行固定两长直导体导轨MN 和PQ ,导轨宽度L =2m ,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T ,在垂直于导轨方向静止放置两根导体棒1和2,其中1的质量M =4kg,有效电阻R =0.6Ω,2的质量m =1kg ,有效电阻r =0.4Ω,现使1获得平行于导轨的初速度v 0=10m/s ,不计一切摩擦,不计其余电阻,两棒不会相撞.请计算:
(1)初始时刻导体棒2的加速度a 大小. (2)系统运动状态稳定时1的速度v 大小.
(3)系统运动状态达到稳定的过程中,流过导体棒1某截面的电荷量q 大小. (4)若初始时刻两棒距离d =10m ,则稳定后两棒的距离为多少? 【答案】(1)10m/s 2(2)8m/s (3)8C (4)2m